初中数学教案
初中数学教案
初中数学教案精选15篇
作为一位无私奉献的人民教师,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的初中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
初中数学教案1
教学目标:
(一)知识与技能
理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。
(二)过程与方法
1.在经历用字母表示数量关系的过程中,发展符号感;
2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力
(三)情感态度价值观
1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.
2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。
教学重、难点:
重点:单项式及单项式系数、次数的概念。
难点:单项式次数的概念;单项式的书写格式及注意点。
教学方法:
引导——探究式
在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.
教具准备:
多媒体课件、小黑板.
教学过程:
一、 创设情境,引入新课
出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。
情境问题:
青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发
爱国主义情感,得到一次情感教育。
解:根据路程、速度、时间之间的关系:路程=速度×时间
2小时行驶的路程是:100×2=200(千米)
3小时行驶的路程是:100×3=300(千米)
t小时行驶的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。
如:100×a可以写成100a或100a。
代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。
代数式可以简明地表示数量和数量的'关系,本节我们就来学习最基本也是最重要的一类代数式整式。
设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系
让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。
1、边长为a的正方体的表面积是__,体积是__.
2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。
3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。
4、数n的相反数是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它们有什么共同的特点?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
单项式:数与字母、字母与字母的乘积。
注意:单独的一个数或字母也是单项式。
设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
火眼金睛
下列各代数式中哪些是单项式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
设计意图:加强学生对不同形式的单项式的直观认识。
解剖单项式
系数:单项式中的数字因数。
如:-3x的系数是 ,-ab的系数是 , 的系数是 。
次数:一个单项式中的所有字母的指数的和。
如:-3x的次数是 ,ab的次数是 。
小试身手
单项式 2a 2 -1.2h xy2 -t2 -32x2y
系数
次数
设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。
单项式的注意点:
(1)数与字母相乘时,数应写在字母的___,且乘号可_________;
(2)带分数作为系数时,应改写成_______的形式;
(3)式子中若出现相除时,应把除号写成____的形式;
(4)把“1”或“-1”作为项的系数时,“1”可以__不写。
行家看门道
①1x ②-1x
③a×3 ④a÷2
⑤ ⑥m的系数为1,次数为0
⑦ 的系数为2,次数为2
设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。
三、例题讲解,巩固新知
例1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有 册;
(2)底边长为a,高为h的三角形的面积 ;
(3)一个长方体的长和宽都是a,高是h,它的体积是 ;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
为 元;
(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .
解:(1)12n,它的系数是12,次数是1
(2) ,它的系数是 , 次数是2;
(3)a2h,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1。
设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。
试一试
你还能赋予0.9a一个含义吗?
设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。
大胆尝试
写出一个单项式,使它的系数是2,次数是3.
设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。
四、拓展提高
尝试应用
用单项式填空,并指出它们的系数和次数:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;
(3)产量由m千克增长10%,就达到 千克;
设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。
能力提升
1、已知-xay是关于x、y的三次单项式,那么a= ,b= .
2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .
设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。
五、小结:
本节课你感受到了吗?
生活中处处有数学
本节课我们学了什么?你能说说你的收获吗?
1、单项式的概念: 数与字母、字母与字母的乘积。
2、单项式的系数、次数的概念。
系数:单项中的数字因数;
次数:单项中所有字母的指数和。
3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。
设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。
结束寄语
悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!
设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。
六、板书设计
2.1 整式
单项式概念 探究 例1 多
单项式的系数概念 观察交流 尝试应用 媒
单项式的次数概念 能力提升 体
七、作业:
1.作业本(必做)。
2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。
设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
八、设计理念:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。
初中数学教案2
教学目标:
1.使学生能抓住关键找出相对应的量,去分析数量关系,把握解题思路。
2.渗透对应的数学思想,提高学生分析解决实际问题的能力。
3.萌发学生的辩证思维,学习全面地分析、考虑问题。
教学过程:
一、以旧引新,促进迁移。
1.提问:
(1)甲买4本练习本,乙买6本练习本,谁付的钱多?为什么?
(2)买的本数多,付出的钱也一定多吗?当每本价钱相同时,买的本数多,付出的钱怎样?付的钱少,说明买的本数怎样?
【评析:这里(1)题的设计颇具匠心,题中有意不说乙和甲买的是同样的练习本,让学生判断谁付的钱多。估计学生中会有两种反馈,一种认为乙买的本数多,付的钱也多;另一种认为不一定乙付的钱多,因为没有说明是同样的练习木。然后在(2)题里,运用反问句强化每本价钱相同这个必要条件。这样的设计,使学生感受到看问题要仔细、全面,不能粗略作出结论。】
2.出示:(同种铅笔)
小红买:///
小刚买://///
(1)知道哪两个条件可以求出每支铅笔的价钱?若告诉小红付出1元2角,怎样计算出每支铅笔的价钱?(板书:12÷3=4(角)。)
(2)还可告诉哪些条件,也能计算出每支铅笔的价钱?
(让学生补条件。估计会有:①小刚付出2元。20÷5=4(角);②两人共付出3元2角。32÷(3+5)=4(角)③小刚比小红多付8角。8÷(5-3)=4(角)。)
(3)(结合所补条件①、②的解答)提问:求每支铅笔的价钱,关键要找出什么?(铅笔支数及相对应的价钱。)(结合所补条件③)请把条件和问题连起来说一遍。教师出示:同一种铅笔,小红买了3支,小刚买了5支,小刚比小红多付8角钱,每支铅笔多少钱?
二、尝试练习,归纳思路。
1.学生独自思考,尝试解答上面的例题。
2.同桌交流,展示解题的思维过程。
3.指名学生列式,并结合算式“8÷(5-3)”提问:为什么用8除以2呢?(让学生根据铅笔实物图说理。)
4.进行鼓励性评价:同学们想得真好。小刚比小红多付8角钱,小刚比小红多买2支铅笔,从这两个相差的数量中找到了相对应的量,即“2支铅笔的价钱是8角钱”。这样就很容易算出每支铅笔的价钱。
【评析:在上面讨论的基础上,运用形象直观而又简明通俗的实例,提出要求的问题,让学生独立思考,展开想象,在教师的点拨下,补出各种不同的条件。然后从学生所补的条件中,选择一种,组成一个完整的应用题,放手让学生自己去解答。这样的教学能引导学生参与学习的意向,主动地掌握这类问题的结构以及解题的关键,完全改变了教师一步一步发问,学生跟随教师一步一步回答的那种被动学习的'状态。从学生的思维来看是变通型、创造型的。】
5.练一练。
一辆汽车用同样的速度行驶,上午行了120千米,下午行了200千米,下午比上午多行2小时,平均每小时行多少千米?
(1)让学生画线段图表述题意,借助线段图找出对应量,进行解答。
(2)由学生展示思维过程,进行评析。
【评析:练习题的情节变了,数量之间的关系未变,要求学生画线段图找对应量进行解答,组织学生自己展示思维过程,相互评议,教师只起一个组织者的作用。充分发挥学生的群体作用,使学生的心态处于学习主体的位置,感受到互助合作与成功的愉快。】
三、分层练习,发展思维。
第一层:
选择正确算式的编号(用手势表示)。
1.同一种自行车,第一天卖出8辆,第二天卖出的比第一天多2辆,第二天收款1500元。每辆自行车多少元?
(1)1500÷2(2)1500÷(8+2)(3)1500÷(8+2+8)
先让学生独立思考,画图分析,进行选择。在作出正确选择后,教师继续引发学生深入思考:
①若选算式
(1),应怎样改变条件?
②若选算式
(3),应怎样改变条件?从中突出关键是要找相对应的量。
2.水果店运来若干箱苹果,每箱苹果一样重。一共运来250千克。已经卖出4箱苹果,卖出100千克。每箱苹果重多少千克?
(1)10O÷4(2)(250-100)÷4
先让学生独立思考作出选择,再引导学生画出线段图,并提问:若要选择算式(2),条件该怎么改?从中强调根据所求问题选择有关信息,关键是找出对应量。
【评析:这两题都采用选择算式的形式,在学生作出正确判断后,教师再次要求学生,根据所给的算式改变应用题的条件,使算式与题目的要求相符合。这种练习方式,既有利于辨析应用题条件与问题的关系,强化解题思路,防止思维负定势,又渗透了事物之间的千变万化,学会具体问题具体分析的科学态度,这确是一种较好的练习形式。】
第二层:发展题。
学校新买来10盒羽毛球。如果从每盒中取出2只,剩下的羽毛球正好等于原来的8盒。买来的10盒羽毛球共有多少只?
在学生独立思考的基础上,让学生前后四人为一组进行讨论,再指名展示思维过程,师生一起作评价,突出解题关键在于“取出的羽毛球相当于原来的2盒”这个对应量。
四、课堂小结。
提问:今天所学的应用题,解题的关键是什么?
【总评:潘小明老师的这节课,曾在本市和外省市借班上课,教学效果甚佳,表现在学生学得主动,思维活跃,甚至于有些学生不愿意下课,还要讨论下去。究其原因,一是摆正了教与学的关系,千方百计让学生主动地学,使学生真正成为学习的主体。二是改革了应用题传统的教学方法,将原来的“读题→分析(或画线段图)→列式计算→写答句”的模式,改变成“直观形象的实例→提出问题→分析解答→组成语言文字的应用题→完整解答→变化条件或问题→深化认识”的认知过程模式。这种教学模式更贴近学生的认识规律。三是紧紧把握住题目里数量之间的关系,突出解题思路,训练学生思考力。当然,要做到这些还必须具有正确的教学思想和教育观念,承认儿童具有巨大的智力潜在力,力求提高他们的数学素养,培育他们良好的心理素质等宏观上的信念,才能组织好一堂课。从这堂课里还可以看出教师的教学艺术也起到重要的作用。】
初中数学教案3
初中数学分层教学的理论与实践
天山六中裴焕民
一、分层教学的含义
分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。
分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。
二、分层教学必要性分析
1、教学现状呼唤分层教学的实施
义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。
2、新课程改革呼唤分层教学的实施
数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到
“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。
在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。
3、学生个体差异的客观存在
心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。
学生作为一个群体,存在着个体差异
(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。
(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。
(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。
4、分层次教学符合因材施教的原则
目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的`学生就可能变成了后进生。有研究结果表明:教师、
家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。
5、分层次教学能够有效推动教学过程的展开
按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。
三、分层教学研究的目的意义
捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。
1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。
2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在
备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。
3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。
四、分层教学的理论基础
1、掌握学习理论
布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。
2、教学最优化理论
巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。
3、新课标的基本理念
《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。
五、分层教学实施的指导思想及原则
首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助
他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。
在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。
其次,在分层教学中应注意下列原则的使用:
①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;
②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;
③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;
④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;
⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;
⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。
六、实施分层教学的策略与措施
(一)分层建组
把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让
初中数学教案4
一、教学案例的特点
1、案例与论文的区别
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
2、案例与教案、教学设计的区别
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
3、案例与教学实录的区别
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
4、教学案例的特点是
——真实性:案例必须是在课堂教学中真实发生的事件;
——典型性:必须是包括特殊情境和典型案例问题的故事;
——浓缩性:必须多角度地呈现问题,提供足够的信息;
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
二、数学案例的结构要素
从文章结构上看,数学案例一般包含以下几个基本的元素。
(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的.思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
三、初中数学教学案例主题的选择
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(1)体现让学生动手实践、自主探究、合作交流的教学方式;
(2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;
(3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;
(4)体现数学与信息技术整合的教学方法;
(5)体现教师在教学过程中的组织者、引导者与合作者的作用;
(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
初中数学教案5
一、教学目标:
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3.例题精讲
例1.求8,-8,,-的'绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1.绝对值小于4的整数是____.
2.绝对值最小的数是____.
3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
初中数学教案6
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值.
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用.
教师应给“学困生”一点物理学知识的引导.
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 当I=0.5时,R=10I=100.5 =20(欧姆).
师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言.
师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子.
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×0.5.得F =600l
当l=1.5时,F=6001.5 =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,
l=600F .
当F=400×12 =200时,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的.纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,
∴设y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,
师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=1.1kg/m3根据V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
板书设计
17.2 实际问题与反比例函数(三)
1.
2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?
设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,
Fl=k 即F=kl (k>0且k为常数).
由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.
活动与探究
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
x(m) 10 20 30 40
y(m)
过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.
结果:(1)绿化带面积为10×40=400(m2)
设该反比例函数的表达式为y=kx ,
∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函数表达式为y=400x .
(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。
初中数学教案7
《正方形》教学设计
教学内容分析:
⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:
⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:
⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。
⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:掌握正方形的性质与判定,并进行简单的推理。
难点:探索正方形的判定,发展学生的推理能
教学方法:类比与探究
教具准备:可以活动的四边形模型。
一、教学分析
(一)教学内容分析
1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)
2.本课教学内容的地位、作用,知识的前后联系
《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
3.本课教学内容的`特点,重点分析体现新课程理念的特点
本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。
(二)教学对象分析
1.学生所在地区、学校及班级的特色
我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。
2.学生的年龄特点和认知特点
班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。
教学过程:
一:复习巩固,建立联系。
【教师活动】
问题设置:①平行四边形、矩形,菱形各有哪些性质?
②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。
【学生活动】
学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。
【教师活动】
评析学生的结果,给予表扬。
总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。
演示平行四边形变为矩形菱形的过程。
二:动手操作,探索发现。
活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?
【学生活动】
学生拿出自备矩形纸片,动手操作,不难发现它是正方形。
设置问题:①什么是正方形?
观察发现,从活动中体会。
【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。
【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。
设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?
【学生活动】
小组讨论,分组回答。
【教师活动】
总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。
设置问题③正方形有那些性质?
【学生活动】
小组讨论,举手抢答。
【教师活动】
表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角
活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?
学生活动
折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。
教师活动
演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?
()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。
学生活动
小组充分交流,表达不同的意见。
教师活动
评析活动,总结发现:
一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;
有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;
有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;
四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。
-
- 《春天来了》教案
-
2024-05-25 13:24:47
-
- 四年级上册语文教案
-
2024-05-25 13:21:59
-
- 幼儿园运动会教案
-
2024-05-25 13:19:10
-
- 大班健康教案
-
2024-05-25 13:16:22
-
- 四年级下册美术教案
-
2024-05-25 13:13:34
-
- 中秋节主题班会教案
-
2024-05-25 13:10:46
-
- 小学美术教案
-
2024-05-25 13:07:57
-
- 小学科学教案
-
2024-05-25 13:05:09
-
- 大班手工活动教案
-
2024-05-25 13:02:20
-
- 二年级下册数学教案设计
-
2024-05-25 12:59:32
-
- 《麦哨》语文教案
-
2024-05-25 12:56:44
-
- 《新型玻璃》中班教案
-
2024-05-25 12:53:55
-
- 六年级数学教案
-
2024-05-25 12:51:06
-
- 新学期主题班会教案
-
2024-05-25 12:48:18
-
- 中班语言活动教案含反思
-
2024-05-25 12:45:30
-
- 幼儿园语言教案
-
2024-05-25 12:42:42
-
- 《女娲造人》教案
-
2024-05-25 12:39:54
-
- 《济南的冬天》教案
-
2024-05-25 12:37:06
-
- 《北京亮起来了》优秀教案
-
2024-05-25 12:34:17
-
- 幼儿园小班公开课教案
-
2024-05-25 12:31:28