爱范文 > 教案 > 正文

​五年级数学下册教案

2024-05-22 08:54 来源:爱范文 点击:

五年级数学下册教案

人教版五年级数学下册教案(通用23篇)

作为一名无私奉献的老师,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编收集整理的人教版五年级数学下册教案,仅供参考,大家一起来看看吧。

人教版五年级数学下册教案1

image.png

教学内容:

教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。

教学目标:

1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

教学重点:

经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

教学难点:

理解三角形面积公式的推导过程。

教学准备:

多媒体课件、教材第115页的三角形。

探究方案:

一、自主准备

1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?

( ) ( ) ( )

2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?

(2)有没有直接计算三角形面积的方法呢?

(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

二、自主探究

1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。

2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。

3.想一想

(1)拼成平行四边形的两个三角形有什么关系?

(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?

(3)根据平行四边形的面积公式,怎样求三角形的面积?

三、自主应用

试一试:完成书上第10页的“试一试”。

四、自主质疑

说一说:(1)三角形的面积公式是怎么推导的?你还有什么疑问?

(2)你认为本节课应学会什么?

教学过程:

一、明确目标

提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

二、交流提升

1.出示例4的方格图及其中的平行四边形。

(1)全班交流:每个涂色的三角形的面积各是多少平方厘米?

(2)小组交流:你是怎么得出每个三角形的面积的?说说你的`想法。

(3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出平行四边形的面积,再除以2得出三角形的面积。

三角形的面积和平行四边形的面积会有什么联系呢?

2.交流三角形面积公式的探究情况。

(1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。

小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的平行四边形的底和高各是多少?面积是多少?

(2)全班交流:你有什么发现?(即例5下面的问题)

(3)梳理、明确

两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2

3.交流“试一试”

(1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?

(2)学生订正。

三、巩固提升

1.完成“练一练”的1、2两题。

学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个平行四边形,三角形的面积和平行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)

2.练习二第6题。

学生独立完成,组织校对。

3.练习二第7题。

(1)多媒体出示第7题的方格图及平行四边形和三角形。

(2)独立思考:你认为图中哪几个三角形的面积是平行四边形面积的一半?为什么?

(3)小组交流:分别是怎么想的。

(4)全班交流、总结

可以通过计算,判断三角形的面积是不是平行四边形面积的一半,也可以把三角形的底和高与平行四边形逐一比较,很快作出判断。

4.练习二第8、9题。

(1)学生独立完成,再交流想法。

(2)学生订正。

四、总结延伸

本节课你有什么收获?还有什么疑问?

板书设计:

三角形的面积计算

两个完全一样的三角形都可以拼成一个平行四边形。

平行四边形的面积=底×高

2倍一半

三角形的面积=底×高÷ 2

人教版五年级数学下册教案2

教学内容:

人教版小学数学教材五年级上册第91页主题图、92页例2、 “做一做”,“你知道吗?”

教学目标:

1、知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题

2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。

教学重点:

理解并掌握三角形面积的计算公式

教学难点:

理解三角形面积计算公式的推导过程

考点分析:

能根据具体情况应用三角形面积公式解决实际问题

教学方法:

创设情境——新知讲授——巩固总结——练习提高

教学用具:

多媒体课件、三角形学具

教学过程:

一、创设情境

师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)

师:同学们,红领巾是什么形状的?

生:三角形的

师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。

板书:三角形的面积

二、新知探究

1、课件出示一个平行四边形

师:平行四边形的.面积怎么计算?

生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)

师:平行四边形的面积公式是怎样得到的?

生说推导过程

师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢?

生1:我想把它转化成已学过的图形。

生2:我想看看三角形能不能转化成长方形或平行和四边形。

2、动手实验

师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。

生小组合作,教师巡视指导。

3、展示成果,推导公式

师:同学们经过猜想,验证,已经推导出了三角形面积的计算公式。请展示给大家看。

生展示

汇报一:两个完全一样的锐角三角形拼成的平行四边形。

汇报二:两个完全一样的钝角三角形拼成的平行四边形

汇报三:两个完全一样的直角三角形拼成的平行四边形

除此之外,两个完全一样的直角三角形还可以拼成三角形

三角形的面积=长方形的面积(平行四边形)÷2

=长×宽÷2

=底×高÷2

4、例题讲解

红领巾底是100cm,高33 cm,它的面积是多少平方厘米?

三、巩固提升

1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?(单位:厘米)

2、指出下面三角形的底和高,并口算出它们的面积。 (单位:厘米)

3、上图是一个平行四边形,看图填空

平行四边形的面积是12平方厘米,三角形ABC的面积是( )平方厘米。

4 、思考题你能在图中再画出与涂颜色的三角形的面积相等的三角形吗?

四、 总结结课

1、学生总结

这节课你学习了什么?你有什么收获?(小组说--组内总结--组间交流)

2、教师总结

今天我们一起探索了三角形的面积计算公式,并能应用于实际问题的解决中。

板书设计:

三角形的面积

平行四边形的面积=底×高

三角形的面积=长方形的面积÷2

=长×宽÷2

=平行四边形的面积÷2

=底×高÷2

人教版五年级数学下册教案3

教学目标:

1.通过教学,使学生初步理解同分母分数相加减的算理,掌握同分母分数加、减法的计算法则。

2.培养学生数形结合的数学思想,提高学生迁移类推的'能力和计算能力。

3.培养学生规范书写和仔细计算的良好习惯。

重点难点:

理解同分母分数加、减法的算理和计算方法。

教学过程:

一、复习导入

1.填空。

(1)3/4的分数单位是( ),它有( )个这样的分数单位。

(2)( )个1/8是5/8,7/12里有( )个1/12

(3)3个1/5是( ),4/7是4个( )。

2.谈话:我们在三年级已经学过同分母分数的加、减法,今天这节课,我们继续研究这个知识。

二、新课讲授

1.出示教材第89页例1。

(1)提问:观察图,从图中你都知道了哪些数学信息?(把一张饼平均分成8份,爸爸吃了3/8张饼,妈妈吃了1/8张饼,求爸爸和妈妈共吃了多少张饼)。

提问:求爸爸和妈妈共吃了多少张饼?怎样列式?为什么?

学生思考并回答:1/8+3/8,表示把这两个数合并起来,所以用加法。

提问:你能算出结果吗?怎样想的?

引导学生这样思考:1/8是1个1/8,3/8是3个1/8,合起来也就是4/8,提问:1/8+3/8的和是4/8,为什么分母没变?分子是怎样得到的?

(因为1/8和3/8的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变)。

板书:1/8+3/8=1+3/8=4/8=1/2

说明:计算的结果,能约分的要约成最简分数。

(2)提问:怎样计算同分母分数的加法。

小结:分数加法的含义与整数加法相同,都是表示把两个数合并成一个数的运算。在计算同分母分数加法时,分母不变,只把分子相加。

(3)即时练习

1/5+1/5

2/7+3/7

7/10+1/10

2.同分母分数减法。

人教版五年级数学下册教案4

一、教学内容

课本P38~40。

二、教学目标

1.知识与技能

使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。

2.过程与方法

让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。

3.情感、态度与价值观

使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。

三、重点难点

1.教学重点

体积概念的建立以及对体积计量方法的理解。

2.教学难点

感知物体的体积以及建立体积单位的概念。

四、教学用具

1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。

五、教学设计

(一)铺垫选择研究方向

1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。

2.观察思考。

(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)

(1)水面的位置发生了什么变化?杯中的水为什么会上升?

(2)杯中的水为什么会上升,这就是我们今天要研究的内容。

(二)发现并认识体积

1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……

2.教师巡视与学生一起探讨。

3.提问汇报。

(1)你们是怎样进行实验的?

(2)你们在实验过程中观察到了什么现象?

(3)学生动手操作。

(4)学生回答。

生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。

4.表象再现。

(1)闭眼回忆刚才验证物体的样子。

(2)学生闭眼想象。

5.抽象体积的概念。

(1)物体所占的空间一样吗?

(2)学生回答。

生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。

(3)为什么上升的水面会比原来的高?

(4)学生回答。

生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。

6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。

(1)什么叫物体的体积?

(2)学生回答:物体所占空间的大小叫做物体的体积。

7.看书质疑。

(三)自我探索体积单位

1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】

2.猜想。

你听说过哪些体积单位?

(1)常用的体积单位有哪些?

(2)汇报:将你们学习到的说给大家听听。

(3)学生回答。

棱长1厘米的正方体,体积是1立方厘米;

棱长1分米的正方体,体积是1立方分米;

棱长1米的正方体,体积是1立方米。

(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)

3.估量体积单位。

(1)1立方厘米的空间有多大?比画比画。

(2)什么物体的体积大约接近1立方厘米?

(3)1立方分米有多大?比画比画。

(4)什么物体的体积接近1立方分米?

(5)1立方米呢?

(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)

4.填入适当的单位。

(1)橡皮的体积大约是5()。

(2)桌子的体积大约是240()。

5.质疑。

(四)体积的初步计量

1.教师演示(学生跟着摆)。

(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?

(3)(改变长方体的`摆法)这是长方体吗?它的体积是多少?为什么仍是6立方厘米?

(4)(再改变形状)形状变了,体积有没有变?为什么?

(5)为什么不管摆什么形状,体积都是6立方厘米?

2.学具操作。

(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?

(2)为什么所摆的长方体的体积都是9立方厘米?

3.归纳概括。

(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?

(五)巩固练习

1.填空

常用的体积单位有()、()、()。

常用的面积单位有()、()、()。

常用的长度单位有()、()、()。

棱长()的正方体的体积是1立方厘米。

棱长()的正方体的体积是1立方分米。

棱长()的正方体的体积是1立方米。

2.在括号里填上适当的单位。

(1)一根粉笔的体积大约是10()。

(2)讲台桌的体积大约是0.4()。

(3)一本《新华字典》的体积大约是0.35()。

(4)一张信纸的面积大约是5()。

(5)一块城砖的体积大约是3()。

3.拼一拼,说说是由几个1立方厘米的正方体组成的?

(六)全课总结

通过这节课你有哪些心得和体会?你还有哪些问题?

(七)板书设计

体积和体积单位

意义:物体所占空间的大小叫做物体的体积。

单位:立方厘米、立方分米、立方米。

计量:要看这个物体含有多少个体积单位。

人教版五年级数学下册教案5

设计说明

1.加强动手操作训练,促进学生的思维。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

2.自主探索,体会优化思想。

本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的.图示方法,渗透优化思想。

课前准备

教师准备 PPT课件 天平 药瓶

学生准备 天平

教学过程

情境导入,激发兴趣

1.你们每天上学通常要走哪条路?为什么要选择这条路?

(生自主回答)

2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

实践操作,自主探究

1.提出探究要求。

师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

2.动手操作,汇报方法。

学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

3.总结归纳记录的方法。

组织学生把用天平称的过程用图表记录下来。

合作交流,研究探讨

师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

理解题意,动手操作。

(1)先让学生读题,说说“至少”的含义。

(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

人教版五年级数学下册教案6

[教材简析]

这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。

[教学目标]

1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。

2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,

3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。

[教学过程]

一、复习旧知,引发冲突

1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)

我们再从右往左看,500去掉一个0,发生了什么变化?

2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)

谁的猜想正确?我们可以用什么方法证明?(举些例子)

[设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]

二、实例作证,体验小数性质的合理

1、创设情境,初步感知

(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?

(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。

(3)学生活动后组织全班交流,可能出现如下的比较方法:

①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。

②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。

③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。

(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。

教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。

[设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断0.3元=0.30元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证0.3元=0.30元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]

2、试一试,加深体验

谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。

(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。

(2)交流比较方法:说说你是怎样比较的?

可能出现如下的方法:①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。

(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?

使学生初步体验小数的末尾去掉“0”,小数的大小不变。

[设计意图:“为什么去掉0.100米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现0.100米、0.10米和0.1米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]

3、总结体验,概括表达

上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。

小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。

刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?

4、突出“末尾”,体验内涵

牛奶2.80元

面包4.00元

汽水3.05元

火腿肠0.65元

(1)小强去超市购买了一些物品,得到一张购物单(出示例5):

合计10.50元

请你帮他找一找:这些物品的价格中哪些“0”可以去掉?

在书上填一填。

学生完成后进行全班交流:

①2.80元=2.8元。说说你是怎样想的。

想法一:根据小数的性质,直接去掉末尾的“0”。

得到2.80元=2.8元。你还能用其它方法证明吗?

想法二:2.80元是2元8角,2.8元也是2元8角。

想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。

谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。

②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。

由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)

(2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?

[设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的专项教学——辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵——突出小数“末尾”。]

三、解决问题,体验小数性质的应用

1、小数的化简

根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的.“0”,把小数化简。

化简下面的小数:0.400 0.080 1.750 29.00

学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?

2、小数的改写

试一试:不改变数的大小,把下面各数写成三位小数。0.4 3.16 10

学生独立思考,在书上填空。

完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?

小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。

如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。

四、巩固应用,深化小数性质的体验

1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。

完成后观察每组中的两个数,你有什么发现?

0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?

2、完成练一练第2题。先涂色表示各小数,再比一比。

交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?

教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。

[设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]

3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?

4、完成练习六第4题。学生独立改写。

交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。

5、完成练习六第5题。

提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)

学生独立改写后交流。

谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)

五、总结延伸

通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。

0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

人教版五年级数学下册教案7

教学目标

1.知识与技能

(1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

(2)能正确判断一个数是质数还是合数。

(3)能判断两个自然上的和是奇数还是偶数。

2.过程与方法

引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

3.情感态度与价值观

培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

教学重点

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

教学难点

能运用一定的方法,从不同的角度判断、感悟质数合数。

教学方法

启发式教学、自主探索、合作交流、讨论法、讲解法。

课前准备

多媒体课件

课时安排

1课时

教学过程

(一)激趣导入。

一、创设情境,引入新课(课件第2张)

1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

2.抢答:请同学们以最快的速度说出下面的数有几个因数。

师出示数,学生抢答因数的个数。

3.思考:

(1)一个数的最小因数是几?最大因数是几?(课件第3张)

(2)一个数的因数是有限的还是无限的?

(3)怎样找一个数的因数?

生1:一个数是最小因数是1,最大因数是它本身。

生2:一个数因数的个数是有限的。

生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

设计意图

用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

(板书课题)

(二)探究新知

1.找出1-20各数的'因数,看看它们的因数的个数有什么规律。

(1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

1的因数有:1 11的因数有:1,11

2的因数有:1,2 12的因数有:1,2,3,4,6,12

3的因数有:1,3 13的因数有:1,13

4的因数有:1,2,4 14的因数有:1,2,7,14

5的因数有:1,5 15的因数有:1,3,5,15

6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

7的因数有:1,7 17的因数有:1,17

8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

9的因数有:1,3,9 19的因数有:1,19

10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

(2)师:观察它们因数的个数,你发现了什么?

小组讨论:根据因数的个数,你觉得可以怎样分类?

(3)(课件第6张)

生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

生2:有的数的因数不止两个……我们来分分类吧!

2.学习质数与合数(出示课件第7张)

师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

1既不是质数,也不是合数。

3.做质数表。(课件第8张)

(1)找出100以内的质数,做一个质数表。

(2)学生讨论:怎样找100以内的质数?说说你的方法。

(课件第10张)

生1:可以把每个数都验证一下,看哪些数是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

划到几的倍数就可以了?

生3:划到7的倍数就可以了.

(3)(课件第11张演示)剩下的数都是质数。

(4)师出示100以内的质数表(课件第12张)

4.牛刀小试。(课件第13张)

(1)将下面的各数分别填入指定的圈内。

2 27 37 11 58 61 73 83 95

(2)两个质数,和是10,积是21,这两个质数是多少?

生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

两个质数,和是7,积是10,这两个质数是多少?

10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

5.探索两数之和的奇偶性。(课件第15张)

师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

(1)师:从题目中你知道了什么?

生1:题目让我们对奇数、偶数的和做一些探索。

生2:我把问题表示成这样……

(2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?

(3)汇报交流:

生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

奇数:5,7,9,11,…

偶数:8,12,20,24,…

5+7=12

7+9=16

……

奇数+奇数=偶数

5+8=13

7+12=19

……

奇数+偶数=奇数

8+12=20

12+20=32

……

偶数+偶数=偶数

(课件第18张)生2:奇数除以2余1

偶数除以2余0

奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

(4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

同桌找一些大数,验证一下所得的结论是否正确。

(5)(课件第20张)汇报交流:

534+319=853

所以:偶数+奇数=奇数

681+249=930

所以:奇数+奇数=偶数

564+232=796

所以:偶数+偶数=偶数

设计意图

用归纳的方法得出结论,培养学生的能力。

6.火眼金睛辨对错。(课件第21张)

(1)所有的奇数都是质数。(×)

(2)所有的偶数都是合数。(×)

(3)在1,2,3,4,5中,除了质数以外都是合数。(×)

(4)两个质数的和是偶数。(×)

(5)两个奇数的和是偶数。(√)

7.小结:刚才的学习你学会了什么?(课件第22张)

(1)质数与合数的概念。

一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。

(2)1既不是质数,也不是合数。

(3)自然数可以分为质数、合数和1。

(4)偶数+奇数=奇数

奇数+奇数=偶数

偶数+偶数=偶数

(三)课堂练习

谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

1.写出下面各数的因数。(课件第23张)

(1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

(2)既是质数又是奇数的最小一位数是(3)。

(3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

(4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

2.不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

1+2+3+4+…+40

生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

(四)拓展提高

算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

最小的合数是4,4?=16。

哪3个质数的和是16呢?

2+3+11=16

2×3×11=66

答:这3个质数的积是66。

(五)课堂总结

师:通过学习,你有什么收获?

生交流:

1.一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

2.一个数,除了1和它本身还有别的因数,这样的数叫做合数。

3.1既不是质数也不是合数。

4.奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

(六)板书设计

质数和合数

一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数也不是合数。

教学反思

在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

人教版五年级数学下册教案8

学习目标:

1、理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。

2、引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

教学重点:

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

教学难点:

能运用一定的方法,从不同的角度判断、感悟质数、合数。

教学过程:

一、情景体验

师:上课前老师给大家送来了礼物!(出示百宝箱)大家想要吗?

生:想。

师:可是这个百宝箱安装的是密码锁,没有密码就打不开,你们能根据提示猜出密码打开百宝箱吗?

师:密码是一个三位数,它的第一位既是6的因数又是6的倍数,第二位是最小的质数,第三位是最小的`合数。

生:什么是质数?什么是合数?

师:质数和合数就是我们这节课要学习的内容。(板书课题:质数与合数)

二、思维探索(建立知识模型)

准备题:

1.找出下面每组数中的质数。

(1)19 、29、 39、 49;(2)5、 15、 25、 35。

2.用“O”圈出表中所有的质数,用“△”圈出表中所有的偶数。

21 22 23 24 25 26 37 38 29 30

31 32 33 34 35 36 37 38 39 40

所有的质数都是奇数吗?所有的偶数都是合数吗?

师:上节课我们刚刚学完了因数与倍数。这节课我们继续来学习质数与合数,以便于我们区分这些数。

师:因数是指一个数的约数,因数和倍数相互依存,没有倍数就不存在因数,没有因数也不存在倍数。而质数与合数是建立在因数的基础上,如果一个数的因数只有1和它本身,那么它就叫做质数,如果一个数的因数除了1和它的本身外还有其它的因数,这个数就叫做合数。

师:同学们一定要区分它们的概念。我们一起来判断题目中这些数是质数还是合数。

师:19的因数有哪些?

生:1和19

师:那么它是什么数?

生:质数。

师:很好,回答的很好。这位同学上课肯定很认真听讲。

师:那49的因数有哪些?

生:1、49、7

师:那么它是什么数?

生:合数。

师:嗯,那同学们会判断一个数是质数还是合数了吗?

生:会了。

师:请大家自觉完成这些准备题。(核对答案)

所有的质数都是奇数吗?所有的偶数都是合数吗?

生:2是质数但不是奇数,2是偶数但不是合数。

展示例1

例1:请在□内填入适当的质数。

33=□×□ 28=□×□×□

52=□×□×□ 63=□×□×□

20xx=□+□ 61=□+□

39=□+□ 18=□+□+□

师:请大家想想以下几题该怎么思考?

生:先根据乘法口诀把这几个数分拆开,再判断是不是质数,不是质数再分拆成质数。

师:你的这个方法真不错,大家可以试试。

(核对答案)

33=3×11 28=2×2×7

52=2×2×13 63=3×3×7

20xx=1999+2 61=59+2

39=37+2 18=2+5+11

三、思维拓展(知识模型的运用)

展示例2

例2:两个质数的和是40,求这两个质数的乘积最大是多少?

师:怎样才使乘积最大?

生:和一定时,差越小积越大。

师:你的记性真好!请大家尽量把40拆成很接近的两个质数的和

(学生尝试,核对答案)

因为40=17+23

所以它们的积是:17×23=391

师:完成后请大家记得验证是否满足既是质数又是乘积最大这两个条件。

展示例3

例3:你知道它们各是多少吗?

师:现在我们已经掌握了有关质数和合数的基本知识,请大家运用刚才的所学完成例题3。

(学生汇报答案,阐述理由)

10=3+7 21=3×7质数:3质数:7

24=11+13 143=11×13质数:11质数:13

最小的合数是4,最小的质数是2

展示例4

例4:有三张卡片分别标上数字1、3、7,从中抽出一张、两张、三张,分别组成一位数、两位数、三位数,其中哪些是质数?哪些是合数?

师:这道题目的综合性很强,请大家认真读题再思考如何下手?

生1:分类列举

一位数:1、3、7

两位数:13、17、31、37、71、73

三位数:137、173、317、371、731、713

再找出哪些是质数,哪些是合数就可以了。

生2:1既不是质数也不是合数

(核对答案)

质数:3、7、13、17、31、37、71、73、137、173、317

四、融会贯通(知识模型的拓展)

展示例5

例5:用10以内的质数组成一个三位数,使它能同时被3、5整除,求这个数的最大值和最小值?

师:10以内的质数有哪些?

生:2、3、5、7。

师:用2、3、5、7这四个数组成一个三位数,使它能同时被3、5整除,你们会吗?

生:会,先从5的倍数特征下手,末尾只能填5。

师:说的真不错,你活学活用的能力很厉害。大家可以顺着这个思路做做这个题目。

(核对答案)最大值:735最小值:225

师:因为题目本身并没有说明数字是否可以重复,所以大家做题,还是要考虑数字可以重复的情况。如果题目明确要求数字不能重复呢?那么最大值,最小值分别是多少?

生:最大值还是735,最小值是375。

五、小结

通过这节课学习,你有哪些收获?

(最后,回到情景体验,让同学们说出百宝箱的密码:624)

人教版五年级数学下册教案9

教研内容:

质数与合数、分解质因数

教学目标:

1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。

2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。

3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透“对立统一”的辩证唯物主义的观点。

教学重点:

1、理解质数和合数的意义,质因数和分解质因数的意义。

2、分解质因数的`方法。

教学难点:

1、如何判断一个数是质数还是合数。

2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。

重难点突破:

1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。

2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。

教学要点:

1、认识质数和合数。围绕“排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢”这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。

2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。

人教版五年级数学下册教案10

教学内容:

长方体的认识

教学目标:

1.初步认识立体图形、认识长方体的特征。

2.通过观察、想象、动手操作等活动进一步发展空间观念。

3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。

教学重点:

掌握长方体的特征。

教学难点:

通过观察、想象、动手操作等活动进一步发展空间观念

教具运用:

一些长方体物品,课件。

教学过程:

二次备课

一、复习导入

1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)

2.投影出示教材第18页的.主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?

3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。

二、新课讲授

1.认识长方体的面、棱、顶点。

(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)

板书:面

(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。

板书:棱

(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。

板书:顶点

(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。

2.研究长方体的特征。

(1)面的认识。

①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前?后,上?下,左?右。

②引导学生观察长方体的6个面各是什么形状的?

板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

③引导学生进一步验证长方体相对的面的特征。

板书:相对的面完全相同。

④请学生完整叙述长方体面的特征。

(2)棱的认识。教师出示长方体框架教具,引导学生注意观察

人教版五年级数学下册教案11

教学目标:

1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题.

2,学会找出生活问题中相等的数量关系,正确列出方程.

3,培养学生根据具体情况,灵活选择算法的意识与能力.

4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感.

教学重点:

用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题.

教学难点:

分析问题中的等量关系,并会列出方程解答.

教学准备:

多媒体课件.

教学过程:

一,知识回顾:

1,解下列方程.

X+2x=147y-34=71

2,根据下面叙述说说相等关系,并写出方程.

①公鸡x只,母鸡30只,是公鸡只数的2倍.

②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只.

3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密.小军发现……小华发现……小刚提出……

(足球上黑色的皮都是五边形,白色的皮都是六边形的黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)

让学生独立做,集体订正时,(板书线段图).

二,合作探究:

1,教学例1(媒体出示教材情景图).

"足球上黑色的皮都是五边形,白色的皮都是六边形的白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"

(1)审题,寻找解决问题的有用信息.

提问:"例题与复习题有什么相同的地方""有什么不同的地方"

教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题.今天我们学习用方程解答这类问题.

教师板书:稍复杂的方程

(2)分析,找出数量之间的相等关系(教师板书线段图讲解)

看图思考:白色皮和黑色皮有什么关系

学生小组讨论,汇报结果.

可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数

黑色皮的块数×2-白色皮的块数=4

黑色皮的块数×2=白色皮的块数+4

(3)同桌讨论怎样列出方程.

(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系.允许学生列出不同的方程.

板书学生的方程并选择2x-4=20讨论它的解法.

学生小组讨论解法.

汇报交流板书:

解:设共有x块黑色皮.

2x-4=20

2x-4+4=20+4

2x=24

2x÷2=24÷2

x=12

检验:(引导先生口头检验)

答:共有12块黑色皮

(5)学生选择其余的`方程解答.

2,变式练习.

(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答.

(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易.

3,引导学生总结列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示.

②分析,找出数量之间的相等关系,列方程.

③解方程.

④检验,写出答案.

三,巩固应用

1,只列式不计算.(课件出示)

①图书室有文艺书180本,比科技书的2倍多20本,科技书x本.

②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只.

③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只.

④一个等腰三角形的周长是86厘米,底是38厘米.它的腰是x厘米.

2,学生独立完成,集体汇报交流

①北京故宫的面积是72万平方米,比广场面积的2倍少16万平方米.广场的面积是多少万平方米

②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米.大洋州的面积是多少万平方千米

③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km

④共有1428个网球,每5个装一筒,装完后还剩3个.一共装了多少筒

3,拓展提高.

①甲乙两数的和是90,甲数是乙数的2倍.甲乙两数各是多少

②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少

四,全课总结

今天这节课你学到了什么知识

板书设计:

先把2x看作一个整体

人教版五年级数学下册教案12

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。

(二)核心能力

在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。

(三)学习目标

1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。

2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,

(四)学习重点

质数、合数的意义

(五)学习难点

正确掌握判断质数和合数的方法。

(六)配套资源

实施资源:《质数和合数》名师教学课件、百数表

二、教学设计

(一)课前设计(课前复习)

(1)找出1~20各数的因数。

(2)观察找出的1~20各数的因数,看看它们的个数有什么规律?

(二)课堂设计

1、谈话引入

师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?

师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?

师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。

2、问题探究

(1)认识质数和合数

①引导观察,分类思考

师:课前大家都找出了1~20各数的全部因数,谁来展示一下。

生展示引导学生评价是否正确。

师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?

师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?

全班交流,归纳小结。

可以分成三类:

有一个因数:1

有两个因数:2、3、5、7、11、13、17、19

有两个以上因数:4、6、8、9、10、12、15、16、18、20

②认识质数

师:先观察只有两个因数的特征,他们的因数有什么特点呢?

(出示:只有1和它本身两个因数)

师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。

师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)

师:最小的质数是几?最大的呢?

③认识合数

师:再看4、6、9、10等这一类的.数,它们的因数跟质数的因数比较,有什么不同呢?

引导小结:除了1和它本身以外,还有别的因数。

师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

师:谁再举出几个合数的例子?举得完吗?说明了什么?(合数也有无数个)

想一想:最小的合数是几?最大的呢?

④1既不是质数也不是合数

师:现在还剩一个1,它是质数还是合数?

交流明确:1既不是质数,也不是合数。

⑤小结

师:按照因数个数的多少,自然数又可以分为哪几类呢?

明确:按照因数的个数,把自然数分为质数、合数和1三类。

【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

(2)100以内的质数

师:如果请你们找出100以内的质数都有哪些,可以怎样来找?

生讨论汇报。

预设1:可以把每个数都验证一下,看哪些是质数。

预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……

师:你们认为哪种方法比较简便一些?(预设2的方法)

引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。

四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?

全班交流汇报,教师课件演示。

【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。

(3)沟通联系,形成能力

师:通过今天的学习,自然数都可以怎样分类?

学生交流后,明确:

自然数按因数的个数分为:质数、因数和1;

自然数按是否是2的倍数分为:奇数和偶数。

师:请大家结合所学的这些知识介绍自己的学号。

随机抽取学生介绍,并适时拓展。

3、巩固练习

(1)将下面各数分别填入指定的圈里。

27 37 41 58 61 73 83 95

11 14 33 47 57 62 87 99

(2)下面的说法正确吗?说说你的理由。

①所有的质数都是奇数。

②所有的偶数都是合数。

③所有的奇数都是质数。

④所有的合数都是偶数。

辨析:

①所有的质数都是奇数

学生举反例反驳。

引导:你是怎样很快的找到这个数的,能说说方法吗?

交流,明确:先写出所有的质数,再找其中不是奇数的。

板书找的过程,并标注特殊数。

引申:这句话怎样改就对了?

交流,明确:除2外,所有的质数都是奇数。

辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。

学生分组辨析,每两大组辨析其中的一句话。

小组合作,用刚才列举的方法找到特殊数。

小组代表上台板演辨析的过程。

对比,明确:

除2外,所有的质数都是奇数,所有的偶数都是合数;

因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。

(3)括号内填入正确的质数。

15=()+()18=()+()

22=()+()49=()×()

4、全课总结

师:通过今天的学习你有什么收获?

小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。

(三)课时作业

(1)填空。

①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。

②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。

答案:①2和3;8和9 ②412

解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】

(2)老师家的电话号码是多少?

①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。

②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。

③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。

答案:62419918。

解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】

人教版五年级数学下册教案13

教学目标 :

1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;

2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;

3、培养学生的观察、概括能力。 教学

教学重点:

掌握正方体的特征。

教学难点:

正方体与长方体的比较。

课前准备:

教法学法 实践法、讨论法

教学过程:

一、复习导入

1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?

2、口答:说出每个图形的长、宽、高各是多少。

3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。

(揭示课题:正方体的认识)

二、概括特征

1、以小组为单位发学具。

2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。

3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。

4、汇报交流

(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的.正方形。

(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。

(3)让生说说有几个顶点?你是怎么验证的?

5、提问:谁能完整地说一说正方体有什么样的特征?

多指名几个同学说特征。

6、结合直观图小结:正方体6个面是完全相同的正方形,它有12

条棱,每条棱的长度都相等。它还有8个顶点。

7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?

8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。

三、观察比较,体会异同

1、提问:长方体和正方体有哪些相同点,有哪些不同点?

2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。

3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。

4、根据比较结果,想一想正方体和长方体有什么关系?

不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。

练习 完成P20做一做

总结 今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?

作业布置

板书设计 :

正方体的认识

6个面 (完全相同,都是正方形)

立体图形正方体 12条棱 (长度相等)

8个顶点

人教版五年级数学下册教案14

教学目标:

1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

教学重点:

探索并掌握平行四边形的面积计算方法。

教学难点:

理解平行四边形面积计算公式的推导过程。

教学工具:

电子白板课件、平行四边形模型、剪刀、初步探究学习卡

教学过程:

一、课前引入、渗透转化。

1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2.播放制作七巧板的视频。

3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1.电子白板导出两个花坛,比一比,哪个大?

2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1.利用数方格,初步探究

2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的.、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1.探索把一个平行四边形转化成已学习过的图形。

2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3.平行四边形的面积=底×高

4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1.课件出示例1

2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

人教版五年级数学下册教案15

一、教学目标:

1、认识和掌握长方体的特征,理解长、宽、高的概念。

2、能会计算长方体的棱长总和。

3、培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展学生的创新意识。

4、在学习的过程中,培养学生团结合作的精神。

二、教学重点:

掌握长方体的特征,认识长方体的长、宽、高。

三、教学难点:

初步建立“立体图形”的概念,形成表象。

四、教具准备:

多媒体教学设施及相关课件,长方体实物模型两个(其中一个两面是正方形的长方体)、长方体的框架一个。

五、学具准备:

学生每人准备一个长方体形状的纸盒和一把尺子。

六、教学过程:

一、导入课题:

师:今天,老师给同学们带了几位老朋友,同学们看,你们认识它们吗?(屏幕上显示:长方形、正方形、三角形、平行四边形和梯形)你们能说出它们的名称吗?

生:逐个说出长方形、正方形、三角形、平行四边形、梯形。

师:这些图形都是咱们前面所学过的平面图形,现在你们再看这些图形,和前面那些图形一样吗?(屏幕上显示:正方体、圆柱体、圆锥体、长方体。)

生:不一样。

师:(指着图)像这样的图形,就是立体图形,今天,我们一块来研究立体图形中的一种图形(屏幕上显示:一个长方体)长方体。(板书课题:长方体的认识)

二、探究新知:

1、面的认识:

师:根据同学们以前所学习的知识,谁能说说长方体的大概样子呢?

生:它的大概样子是长长的,方方的。

师:请同学们在这些图中,找出长方体(出示课件)第几个是长方体?

生:回答。

师:在日常生活中,你发现哪些物体是长方体?

生甲:烟盒,牙膏盒,药盒等。

生乙:电冰箱,收音机,微波炉等。

生丙:砖,床,衣柜,教室等。

师:在我们的生活中,有许许多多的物体是长方体,只要同学们仔细观察,就能发现很多很多。现在请同学们拿出自己准备的学具,跟着老师一块儿摸一摸(教师拿着长方体教具引导学生摸长方体的面)你摸到了什么?

生:我摸到了长方体的面。

师:它的面是怎样的?

生:是平平的。

师:这样平平的面到底有多少呢?请同学们注意观看屏幕(出示课件)。

生:6个面。

师:你们手中的学具也是6个面吗?数一数。

生:6个面。

师:对,这是我们对长方体的第一个发现,长方体有6个面。(板书:6个面。)这6个面到底有什么特征呢?请同学们再注意观看屏幕(逐个出示:上下两面重合,左右两面重合,前后两面重合。)

师:现在,你看到长方体哪两个面怎么样了呢?

生:上下两个面完全重合在了一起。

师:说明这两个面怎么样呢?

生:说明这两个面的形状、大小完全一样。

师:现在哪两个面又重合在了一起?

生:左右两个面完全重合到了一起。

师:说明左右两个面怎么样呢?

生:说明左右两个面大小完全一样。

师:接下来哪两个面会重合到一起呢?请同学们猜想一下,想出来了请举手。

生:前后两个面会重合到一起。

师:这位同学到底猜想的对不对呢?咱们一块来看大屏幕(显示:前后两个面重合。)这位同学猜想的对吗?

生:对。

师:通过刚才的观察,你发现长方体6个面都是什么形?

生:6个面都是长方形。

师:是不是所有的长方体6个面都是长方形呢?现在请同学们拿出自己的学具仔细观察一下。

生甲:我的长方体学具6个面都是长方形。

生乙:我的长方体学具4个面是长方形,有两个面是正方形。

师:一般情况下长方体6个面都是长方形,在特殊的情况下有两个面是正方形。

师:通过刚才的观察及电脑演示,我们就可以得到长方体面的特征。(师板书:6个面都是长方形,特殊情况下有两个相对的面是正方形),相对的两个面大小相同。现在请同学们齐读长方体面的特征。

生:齐读。

2、棱的认识:

师:(拿出教具边指边说)两个面相交的一条边,我们把它叫做长方体的棱。现在请同学们拿出长方体学具,用手摸一摸长方体的棱,你有什么感觉?

生:有割手的感觉。

师:看着棱,你发现了什么?

生:棱把相邻的两个面分开了。

师:长方体的棱有多少条呢?数一数你的学具。

生:12条。

师:(拿出长方体棱长框架,师引导学生有顺序地依次数出长方体棱长。)12条。这是我们的第二个发现,长方体有12条棱。(板书:12条棱)

师:现在,大家一块来研究长方体的'棱有什么特征呢?请同学们拿出你手中的学具,边观察边用直尺测量,思考一个问题:1、长方体12条棱按长短可以分成几组?怎样分?带着这个问题,四个人为一小组,边讨论边分。(师巡视)

师:讨论好的小组请举手。

生甲:我们小组把12条棱分成了三组,最长的4条分成了一组,较长的4条分成了一组,最短的4条分成了一组。每组棱长度相等。

生乙:我们小组分成了两组:最长的4条分成一组,剩下的8条分成一组。

(师:到底这两组同学分的对不对呢?请同学观看大屏幕,显示1:最长4条分成一组,最短4条分成一组,剩下4条分成一组。有两个面是正方形的分成。显示2:最长的4条分成一组,剩下的8条分成一组。)这两组同学分的对吗?

生:都对。

师:12条棱一般情况下分成3组,每组有4条棱长度相等。特殊情况下分成2组,一组有4条棱长度相等,另一组有8条棱长度相等。相等的棱是相对的,也可以说成相对的棱的长度相等。长方体的棱的特征我们就可以总结为(师边说边板书:相对的棱的长度相等。)

3、顶点的认识:

师:(拿出教具边说边指)三条棱相交的这一个点,我们把它叫做长方体的顶点。拿出你们的学具,摸摸长方体的顶点,有什么感觉?

生:有扎手的感觉。

师:这样的顶点有多少个呢?现在请同学们观看屏幕(显示:长方体的顶点)数一数,长方体有几个顶点?

生:8个顶点。

师:是不是所有的长方体都有8个顶点呢?拿出你们的学具数一数。

生:8个顶点。

师:对,第三个发现,长方体有8个顶点。(师板书:8个顶点)

师:(出示课件)相交于一个顶点的三条棱的长度相等吗?(边说边用鼠标指三条棱)

生:不相等。

师:相交于一个顶点的这三条棱的长度分别叫做长方体的长、宽、高。(边说边用鼠标指长、宽、高)。

师:习惯上,长方体的位置固定以后,(出示学具边说边用手指)我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。现在,请同学们看着老师的学具,老师用手指,同学们说出它的长、宽、高。(师把教具竖放、横放、侧放、让学生说出长、宽、高)

师:实际上,长方体的长、宽、高是根据长方体所放的位置的不同而改变的。现在咱们来做一些练习题。(电脑出示:练习题1)

三、课堂巩固

判断:(正确的在括号里面画“√”,错误的在括号里画“×”。)

(1)长方体的六个面一定是长方形。( )

(2)长方体有6个面,12条棱,8个顶点。( )

八、板书设计:

长方体的认识

6个面都是长方形(特特殊情况有两个面是正方形)

相对的面大小相等

(12条)棱:相对的棱的长度相等

(8个)顶点